Modules Which Are Lifting Relative To Module Classes
نویسندگان
چکیده
منابع مشابه
LIFTING MODULES WITH RESPECT TO A PRERADICAL
Let $M$ be a right module over a ring $R$, $tau_M$ a preradical on $sigma[M]$, and$Ninsigma[M]$. In this note we show that if $N_1, N_2in sigma[M]$ are two$tau_M$-lifting modules such that $N_i$ is $N_j$-projective ($i,j=1,2$), then $N=N_1oplusN_2$ is $tau_M$-lifting. We investigate when homomorphic image of a $tau_M$-lifting moduleis $tau_M$-lifting.
متن کاملF-regularity relative to modules
In this paper we will generalize some of known results on the tight closure of an ideal to the tight closure of an ideal relative to a module .
متن کاملlifting modules with respect to a preradical
let $m$ be a right module over a ring $r$, $tau_m$ a preradical on $sigma[m]$, and$ninsigma[m]$. in this note we show that if $n_1, n_2in sigma[m]$ are two$tau_m$-lifting modules such that $n_i$ is $n_j$-projective ($i,j=1,2$), then $n=n_1oplusn_2$ is $tau_m$-lifting. we investigate when homomorphic image of a $tau_m$-lifting moduleis $tau_m$-lifting.
متن کاملGENERALIZATIONS OF delta-LIFTING MODULES
In this paper we introduce the notions of G∗L-module and G∗L-module whichare two proper generalizations of δ-lifting modules. We give some characteriza tions and properties of these modules. We show that a G∗L-module decomposesinto a semisimple submodule M1 and a submodule M2 of M such that every non-zero submodule of M2 contains a non-zero δ-cosingular submodule.
متن کاملRelatively lifting modules
We consider a generalization of lifting modules relative to a class A of modules and a proper class E of short exact sequences of modules. These modules will be called E-A-lifting. We establish characterizations of modules with the property that every direct sum of copies of them is E-A-lifting. 2000 Mathematics Subject Classification: 16S90, 16D80.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyungpook mathematical journal
سال: 2008
ISSN: 1225-6951
DOI: 10.5666/kmj.2008.48.1.063